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SUMMARY

This method is investigated for semi-infinite multiple-slab config-

urations of arbitrary width, composition, and source distribution.

Isotropic scattering in the laboratory system is assumed.

Isotropic scattering implies that the fraction of neutrons scattered

in the ith volume element or subregion that will make their next colli-

sion in the jth volume element or subregion is the same for all collisions.

These so-called "transfer probabilities" between subregions are calcu-

lated and used to obtain successive-collision densities from which the

flux and transmission probabilities directly follow.

For a thick slab with little or no absorption, a successive-

collisions technique proves impractical because an unreasonably large

number of collisions must be followed in order to obtain the flux. Here

the appropriate integral equation is converted into a set of linear

simultaneous algebraic equations that are solved for the average total

flux in each subregion.

When ordinary diffusion theory applies with satisfactory precision

in a portion of the multiple-slab configuration, the problem is solved

by ordinary diffusion theory, but the flux is plotted only in the region

of validity. The angular distribution of neutrons entering the remaining

portion is determined from the known diffusion flux and the remaining

region is solved by higher order theory.

Several procedures for applying the numerical method are presented

and discussed. To illustrate the calculational procedure, a symmetrical

slab i_ vacuum is worked by the numerical, Monte Carlo, and P5 spheri-

cal harmonics methods. In addition, an unsymmetrical double-slab problem

is solved by the numerical and Monte Carlo methods. The numerical

approach proved faster and more accurate in these examples. Adaptation

of the method to anisotropic scattering in slabs is indicated, although

no example is included in this paper.
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INTRODUCTION

In order to solve a multiple-slab configuration of arbitrary width,
composition, and source distribution for the monoenergetic neutron flux
distribution and the numberof transmissionE, recourse to a numberof
powerful methods is available. Wherever diffusion theory does not apply,
the spherical harmonics (ref. i), Monte Carlo (ref. 2), and S (ref. 3)
methods can be used. n

The present discussion concerns a numerical method that accurately
approximates the exact solution to manysla_ problems with a reasonable
amount of calculation. Isotropic scatterin_ of monoenergetic neutrons
in the laboratory system is assumed. The n_merical method is essentially
a procedure for solving the integral equation for the total flux given
in reference i (p. 78).

The numerical method was worked out in principle by DeMarcusand
Nelson (ref. 4) and was obtained by the author as a natural consequence
of working slab problems by Monte Carlo. This method is relatively easy
to apply whenat least someabsorption is present and/or for thin slabs
where an appreciable leakage occurs - in ot_er words, where too many
collisions need not be followed in order to obtain the flux; these are
the conditions under which diffusion theory is generally inadequate.
For the other extreme, a thick slab with little or no absorption, a set
of simultaneous algebraic equations can be solved for the average total
flux in each subregion. Whenthe diffusion-theory solution is known to
apply with satisfactory precision in a portion of the slab array_ this
information can be utilized to great advants_e in simplifying the numeri-
cal calculation. Also, it proves feasible ia a numberof cases to treat
a multiple-slab configuration as essentiall_ a single-slab problem with
the resulting simplification.

For purposes of illustration, a simple slab containing a centrally
located isotropic source plane and surrounded by vacuumwas chosen. A
scattering probability of 8/i0 per collision and a slab half-width of
0.781 meanfree paths were also chosen.

The integrals for the probabilities of transmission with no colli-
sion and one collision were analytically fornulated and evaluated. The
numerical-method flux and the numberof neutrons transmitted with
exactly K collisions, K = 0,1,2, . . . 19, were obtained and compared
with a Monte Carlo calculation. The numerical-method flux was also
comparedwith the P5 spherical harmonics sad PI diffusion-theory
fluxes.

Values of the slab half-width were successively changedto 1/5 and
5 total meanfree paths, and the numerical-m_thod flux was obtained and
comparedwith diffusion theory for these cas_s.

!
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As a second example, a configuration in vacuum consisting of two

contiguous slabs of different absorption and scattering properties was

solved. An isotropic source plane was assumed at the left extreme

boundary. Distributed volume sources were avoided to facilitate the

Monte Carlo calculation. Twenty-eight collisions were followed in the

Monte Carlo and numerical successive-collisions treatment. The total

flux and the number of transmissions after exactly K collisions were

recorded and compared. The total flux was also obtained numerically by

solving the appropriate set of simultaneous algebraic equations discussed

in the text.

A,B, C,

Av,BvJv=l ,2, 3, ¢

a,b,c_ . . .

ao, aI, - . . b0,b I

G; Gql '0, GO, q_

g

i=i_2,3_

j=1,2,3_ . .

K

SYMBOLS

regions or slabs A,B_C, . . .

arbitrary constants

widths in centimeters of slabs I_ II, III, . .

or slabs A,B,C, . .

nuclear constants of region A and B (defined in

appendix F)

transport flux

coefficient of the %th Legendre polynomial of

in series expansion of transport flux

matrices defined by equations (3) and (12)

number of spherical zones of width d4_ represent-

ing equal areas on a hemisphere of unit radius

matrices defined by equations (3), (12), and (13)

q-by-q-unit matrix

index denoting specific subregion (subslab) of

given slab (subregions are numbered consecutively

from left to right)

index denoting specific subregion (subslab) of

given slab

number of collisions a neutron has suffered



AT,

L'

n r

_r

n(%,

nS(i)

nT

P

P(Z_LI,ALII)

P(x',x)dx

Pi,j or

' AXP(Xi'Xj) j

subregion width in total mean free paths

distance in mean free p_,ths from point lying any-

where in subregion i to center of subregion j;
neutron is assumed to scatter in i and then

collide in j

distance in mean free paths from center of subregion

i to center of subregion j, where

r : b-il = 1,2 . .

distances in mean free _ath units defined in connec-

tion with equation (AS) and sketch (c), page 26

distance in mean free paths from boundary of one

subregion to center of another or conversely

matrices defined by equ_,tions (5) and (5)

number of neutrons scattered per second from K th

collision in subregior i; in particular, n_(i)
represents primary vo]ume source in i

number of neutrons per square centimeter per second

arriving at x0 and Iaving direction cosines in
d_ about

total number of neutrons per second scattered in i

for all collisions

total number of neutrons transmitted after one or

more collisions

number of neutrons tranEmitted in exactly K

collisions

matrix defined by equation (15)

transfer probability between unequal subregions as

measured in units of _ean free path

kernel of equation (i0), given by equation (A2)

probability that a neut_ on will make its next colli-

sion in subregion J after being isotropically

scattered in subregior i

!
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pZ(_) Zth Legendre polynomial



Pr or

P(Lr,AL)

P0

or
P (x',x)

Pr; r=l_2_ .

q

R

r

S

S(L' 1_'

_X

x[,xj

x0,xL, xR

f3v'Yv' _v'

_v' Xl'×2 I
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transfer probability between subregions of equal

width, as measured in units of total mean free

path _eq. (A8a)

probability that next collision will occur in sub-

region in which neutron scattered

probability that a neutron will make its first

collision to left of source plane and be trans-

mitted through right-hand boundary without a

second collision

probability that a neutron scattered or born iso-

tropically at x' will be transmitted through a

boundary _ mean free paths away with no inter-

vening collisions

probability of a source neutron being transmitted

through extreme left or right boundaries, respec-

tively, in exactly K collisions

given a neutron having direction cosine _' and

undergoing scattering collision that may or may

not be isotropic; this expression represents

probability of finding neutron velocity in direc-

tion d_ about _ after collision

transfer probability from source plane at boundary

of a subregion to within rth adjacent subregion

total m_ber of subregions in given configuration

random number

integer 1,2,5, . . . equaling j-i

source

source in infinitesimal strip of width dL'

subregion width in centimeters

x coordinates of centers of ith and jth subregions

x coordinates of interface and extreme left and

right boundaries, respectively

defined by equation (FS)



x,(x/xs)

P

Z

q)(i)

d_

Dirac delta function

probability that a neutron with direction cosine _h
will pass through a _,ingle subregion without
collision

Kronecker delta = _0_h 1

_l_h = 1

error per collision reslm]ting from assumption that

all scattering collisions within a subregion take

place at center

total mean free path an(. scattering probability per
collision

equals cosine of

angle between _ and the x axis

radial distance to next collision point

equals 1/h

1-by-q matrix for flux in each subregion

average total flux in slbregion i

unit vector in directior of neutron velocity

element of solid angle _bout

Subscripts and superscripts:

h

L

R

S

T

I_ II

specific solid angle in direction space

left extreme boundary

right extreme boundary

scattering

transmitted

specific slab, medium_ (r region
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ANALYS IS

The assumption of isotropic scattering _n the laboratory system is

a good approximation for neutron collisions _ith heavy nuclei. Isotropic

scattering implies that the direction of neutron travel after collision
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is unrelated to the direction of travel before collision. Thus, the

probability Pijj that neutrons scattering in volume element i will

make their next collision in volume elemen_ j is the same for all

collisions. For a one-dimensional or semi-infinite slab, i and j

refer to subslabs or subregions that hereafter will be taken to be equal

= P- • Furthermore,in width in a given slab. This implies that Pi,j j,l"

if these subregions are numbered consecutively, Pi,j = Pi+l,j+l" This

means, for example, that PI,6 = P_S = Pg,_ = P8,6' and so forth. The

transfer probability, henceforth called Pr, therefore depends on a

single index r and is characteristic of slab geometry. Thus, given

that a neutron is scattere in any subregion, PO is the probability

that it will make its nex_ collision in the ssme sT_bregion 3 PI in

the adjacent subregion, P2 in the second adjacent _ubregion, and so

forth. The Pr's do not vary from collision to collision and can there-

fore be calculated once and used to obtain the (K+I) st collision density

distribution from the K th. For a slab with q equal subregions, there

are q different transfer probabilities.

For problems involving spherical symmetry, the sphere would be

divided into q spherical shells of equal width. Here, however, the

transfer probability Pi, j from shell i to shell j is not equal to

that from j to i, Pj,i" Also, Pi,i # Pj,j" Thus, there are q2

different transfer probabilities as opposed to the q probabilities of

the slab case.

In cylindrical geometry there would also be q2 Pi, j s between

concentric cylindrical shells. This paper considers only the slab case.

Single-Slab Analysis

Consider a typical slab of width "a" centimeters divided into q

subregions of equal width, numbered from left to right by the index i.

Let X and X s be the total and scattering mean free paths of the

given medium and let the width of each subregion be Z_L total mean free

paths. Furthermore, define _(i) to be the number of neutrons scat-

tered per second from the K th collision in subregion i. Then n_(i)3

for example, represents the given initial volume source in i, and

n_(i) represents the number of first-collision scatterings in i. If

AL has been chosen sufficiently small,

f_X a

=
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then the sources within each subregion can le lumped at its center with

negligible error (appendix A). The transfe_ probability is then computed

from the center of the ith subregion to within the i+r th subregion, after

which the transferred neutrons are in turn lumped at the center of the

latter subregion.

The transfer probability Pr is a function only of the distance

Lr between the centers of the two subregions involved and of the sub-

region width ZSL, all in units of total mean free path. Although

L r = rAL, r = 1,2, .., (q-l), Pr is denoted by P(Lr,AT. ) as formu-

lated and evaluated in appendix A.

Initial and subsequent collision densities arising from distributed

!

O

isotropic volume sources. - The specified vclume sources are assumed to

be lumped into isotropic source planes located at the centers of the sub-

regions. After Po, PI, " ", Pq-i are calculated from equations (A8a)

and (A9), the number of (K+I) st collision scattering hits in subregion i

may be obtained by summing the contributions to i from the previous or

K th collision in all of the s_regions. Mat2ematically ststed,

X [i-i

=
i : 1,2, . ., q (11

where the first summation represents the inpat into i from subregions

to the left of i and the second summation represents the input from

subregions to the right of i, including i itself. The quantity

_/_s gives the fraction of the (K+I) st collision hits that scatter.

Setting K _ 0 in equation (i) gives the ficst-collision distribution

due to the distributed primary volume source_ nS(i ). Successive-

collision distributions _re obtained by successively increasing K by

i unit and evaluating n_+l(i ) from equatiol (i). The total number of

scattering hits for all collisions is given oy

K=I

A sufficient number of collisions are follow_d until nS(i) does not

change appreciably.

First-collision distribution due to iso;ropic source plane at inter-

face between subregions. - If the source pl_le is located at an inter-

face between subregions, another set of tran;fer probabilities Pr can

be calculated from equation (A8) as before, _ut with
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L= (r 12 (ASb)

instead of

L' = r AT. r = 1,2, . (A8a)

Thus, P] represents the fraction of the source-plane neutrons that will

collide-in the first adjacent subregion, P2 in the second adjacent sub-

region, P3 in the third, and so forth. Once the initial-collision dis-

tribution has been determined_ successive-collision distributions follow

from equation (i).

If a reasonable amount of absorption is present and/or the slab is

sufficiently thin so that a large number of collisions are not required

in order for the number of scattering hits to converge, then equation

(2) may be utilized for machine calculation. For cases where conver-

gence is slow, a collision-by-collision technique is impractical, so a

matrix treatment, suggested in reference _; is used.

Matrix formulation of equation (i). - Define matrices H_ G, and

as

A s A s

-P0 PI P2 -- P
,q-i
i

PI P0 PI P2

i

P2 P1 PO P1 P2 ....
I I

! I

-- P2 P1 PO P1 P2 ......
! ! !

! ! !

.... P2 Pl PO P1 P2 ....
I I I I

I I I I

-,- , , _2 PI Po PI P2
I I I I

7 , , 7 _2 PI PO PI
I t ; I I

Pq-i P2 PI P0

(3)

K = 0,1,2, • • •
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Equation (i) can then be written in matrix form as

_+i = _ K = 0,1,2, . . . (4)

The symbol Ng defines the l-by-q matrix for the given original volume
sources. The matrix to be found is Ns, a l-by-q matrix whose elements
nS(i) represent the total number of scattering hits in subregion i for
all collisions (eq. (2)).

Matrix Ns- INS(1), nS(2), . .., nS<q)]

From equation (4) it follows that

_+I . s_K+l= i_On

or

K=0 I-H

where I is a q-by-q- unit matrix. Therefor%

 s(I-H): NSH

The quantities H, I-H_ and N_ are known matrices given by equation

(5). Hence, equation (5) represents q linear simultaneous algebraic

equations for the unknown nS(i). If nS(i) has been found, the average

total flux in each subregion is computed as

_(i) : nS(i) hs
AX

i 1,2, ., q (6)

where ZXX is the width of subregion i in _entimeters. In some cases

it will be more economical to utilize equatign (5) to obtain the con-

verged flux, while in others a collision-by-_ollision technique as

implied by equation (4) will be preferable.

Integral equation for total flux. - It *ill now be shown that equa-

tion (5) corresponds to numerically solving in integral equation for the
total flux.

Denote the x coordinate of the center of the ith subregion in
I

which the neutron scatters by X i. Let Xj be the x coordinate of the
center of the jth subregion to which the neutrons are transferred for

their next collision. Replace the transfer 9robabilities in equation (i)

!
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s i s
by their equivalent P(XI,Xj)ZIX j and replace nK+l( ) by nK+I(Xj)ZIX j-

Summing both sides of equation (i) over-all collisions gives

E _+I(Xj)_Xj = _s n0(Xi)Z_Xi )£_Xj
K= 0 i= I

_K(XibXi )_x
i=l K=I

(v)

Equation (7) states that the total scattering rate for all colli-

sions in ZkXj is the number of first-collision scatterings plus the

number of subsequent scatterings as represented by the last term. From

equations (2) and (6), there follows, after dividing through by

_xj = _xl,

S T T

¢(Xj) = k no(Xi)ZIX i P(X_,Xj) +_ss ¢(X_)ZiX[ P(X[,Xj)
(s)

With the subscript i and/or j affixed to nS, P, and ¢, equation

(8) becomes

q q

s k E ¢iPi, JCJ : _ E n0, iPi, j +_s
i=l i=l

j = 1,2, • • ., q (9)

Equation (9) represents q linear simultaneous algebraic equations. In

it is identically equation (5) with N s replaced by _s ¢"matrix form,

Allowing ZiXI _ 0 in equation (8) gives the Fredholm-type integral

equation for the total flux (ref. I):

/_ ' _ /x ®(x')P(x',x)dx'¢(X) : h , n_(x') P(x',x)dx + h7 ,
(lO)

The kernel P(x',x) is given by equation (A2). The successive-collisions

technique of equation (4) therefore corresponds to solving equation (i0).
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Multiple-Slab Analysis

Vacuum
; t I
I I t
l I I

; i ql
I I ,

Medium I (_I, hI)

i I l I
t u t I

Subregions

t i i I

i i i- z e-I t
I i I I I I I

_-I _15 1'_151el7 I 8ts ql
J i _ I f f I I

xL x0

_----ql/kTl mean free paths _L

Isotropic

source pl_

' ViI
I
i
I I
i I
I I

M-_dium II {_I! hll_
_''' -" S I

J I I I
t I t I
I t t I

(q2 Subregions i

i , , I i

I --_ £'LII _-- I I

i f t I I
_f -i....I --I....i:]..i+1 iql + .....

l i I I I I

q2,kLll mean free paths

7u:\
i
I

i

q

xR
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Sketch (a). - Multiple-slab cDnfiguration.

Angular distribution of neutrons. - Sketch (a) displays two contig-

uous slabs. Additional slabs need not be co:sidered because all the

numerical techniques required are illustratel by this double-slab problem.

An isotropic source plane is assumed at the interface xO.

The neutron flux is obtained in the first slab by following neutrons

from collision to collision within this slab by means of equation (_) or

by solving the ql simultaneous algebraic e_uations represented by

equation (5). The second slab is entered by means of an angular distri-

bution n(xo,_)d _ that is determined from t::e known flux. The angular

distribution is derived as equation (B2) and represents the number of

neutrons per square centimeter per second arriving at x0 and having
direction cosines lying in d_ about _.

The isotropic source plane and n(x0,_) _ determine the first-

collision distribution in the second slab. i{eutrons are followed therein

until its flux converges. A new angular dis;ribution is computed for

reentry into the first slab. These neutrons are followed, giving an

augmented flux that represents the combined _ffect of the original neu-
trons plus those backscattered once from the second slab. The latter

slab is entered a second time_ and so forth. Thus_ neutrons are followed

in one slab at a time, with the other being entered by means of the

s_gular distribution. This procedure is not feasible when an excessive
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number of interface crossings is required to achieve a converged flux

everywhere. This difficulty does not arise if either slab is a reason-

able absorber.

The angular distribution represents an anisotropic source plane at

the interface. The first-collislon distribution of these neutrons is

computed by dividing the angular hemispherical region - to the right of

the interface_ for example - into a grid of g solid angles. The proper

number of neutrons is sent into each solid angle by means of n(xo,_)d_.

The exponential attenuation law gives the fraction colliding in each

subregion of the second slab for direction cosine _. Summing over all

solid angles yields the first-collision distribution as expressed by

equation (B5). Once this is known, subsequent collision distributions

follow from equation (4), or the final distribution follows from equa-

tion (5) with N_ in the right-hand term.

Numerical treatment of ani_otropic scattering in slabs. - Aniso-

tropic scattering in slabs can be treated in an analogous manner by:

(i) Assuming the anisotropic volume sources for the next collision

to be lumped into a source plane at the center of a subregion.

(2) Utilizing an expression p(_',_)d_

that a neutron having direction cosine _'

after undergoing a scattering collision.

which gives the probability

will be found in d_ about

(3) Applying the technique of equations (B5) and (B6) to each source

plane to determine the number of neutrons that will make their next

collision in each of the subregions for a given _.

(4) Repeating steps (i), (2), and (3) for the other _'s and pro-

ceeding to the next collision. _q_e procedure is an order of magnitude

more involved here because the angular distribution must be recorded at

the center of each subregion in following successive collisions_ whereas

it was unnecessary to do this for the isotropic case.

Reduction of multiple-slab to single-slab configuration. - When the

number of interface crossings required becomes excessive, the angular-

distribution approach becomes impractical. Noting that the transfer

probabilities (eq. (AS)) in a given slab are functions only of the sub-

region width ZkL_ one attempts to choose AT.I = ZkLii. The transfer

probabilities of both slabs become identical, and a single set of trans-

fer probabilities applies throughout. A two-slab problem has then been

reduced to a single-slab problem with the resulting simplification:

The relation _L I = Z_LII implies that

a b

ql hl q2k II
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or

q2 = ql ql, q2 = 1,2,3, • • (ii)

where a and b are the respective widths i_ centimeters of slabs I

and II, _ the total mean free path_ and ql the number of subregions
in slab I.

Equation (ii) can be rigorously satisfied only when the given numer-

ical quantity in parentheses is an integer. 0therwise_ a set of values

should be sought for ql and q2 satisfying (ii) such that:

(i) Rounding off to the nearest integers alters the given physical

dimensions of the configuration a negligible _nount.

(2) The values of ql and q2 are not excessively large for cal-

culation purposes.

(3) The values of ql and q2 are sufficiently large that the sub-

regions have negligible lumping error.

When these three criteria can be met_ it is perhaps best to choose

the number of subregions in each slab accordilg to equation (ii). Thus,

a multiple-slab problem can be worked as a si _gle slab. However, the

colliding neutrons must be weighted by the scattering probability _/_s

of the medium in which they collide. Equatio i (i) must then be modified

to read:

to_=i _= i _

i = i_2, • . "' ql

1 e=i
i = ql+l,ql+2, . .., q

q = ql + q2

Define matrix Gql, O to be identical to matrix G of equation (3)

in the first ql columns with zero elements Ln the remaining columns.

Also define G0, q2 to be identical to G in the last q2 columns with

zero elements in the others. Defining matrices and asHI_0 H0,2

!

O
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(i2)

equation (4) becomes

S = S H

K = 0,1,2, • • . (i3)

Following the same procedure used in deriving equation (5) gives

Ns(I- Hi,2)= NO_l,2 (14)

Equation (15) is utilized in a collision-by-collision procedure,

whereas equation (14) gives nS(i) directly when the q simultaneous

algebraic equations represented by (i¢) are solved.

Transfer probabilities between unequal subre_ions lying in differ-

ent media. - When it is impractical to use the angular distribution to

pass from one slab into the other or to make the AL's equal, transfer

probabilities between unequal subregions lying in different media can be

used. These transfer probabilities eliminate the need for the angular

distribution but require many more computer storage locations. They are

calculated from equation (All).

Referring to sketch (a), p!l! is defined as the transfer probabil-
l,j

ity between subregions i and j lying exclusively in medium I and

p(2) as the transfer probability for i and j lying exclusively in
i,j

medium II. If i lies in medium I and j in medium II or conversely,

then the transfer probability is written as Pi, j and Pj,i,
respectively.

A matrix P

lo=

is defined as

-A_ I { _ _i
=,J i\_J _,J

/_

matrix I!ql-by-q2 matrix

q

ql-by-ql

L

I(_)TTp(_.)(k-_s)IPj, i , i,J

I
c52-by-ql matrix i q2-by-q 2 matrix

(15)
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Since PI_ and P_ are the usual transfer probabilities between sub-
regions lying in the samemedium, they can be denoted by p(1) and

rp 2), respectively, to be consistent with th_ previous notation. If

there are ql = 6 subregions in medium I, for example, and q2 = _
subregions in medium lI (q = ql + q2 = 10), then equation (15) reads

-p(oi)

p(ii)

p_i)

p_i)

P7,1

PIO, 1

P7,2 P7,3 P%A P7_5 P7_6

P8,2 P8_5 P8,4 P8,5 P8,6

P9,2 P9,5 P9,A P9_5 P9,6

PIO, 2 PIO, 5 PIO, A PIO, 5 PIO, 6

p
PI, 7 PI,8 PI,9 i, i0

P2_7 P2_8 P2_9 P2,10

P5,7 P3,8 P5,9 P5,10

PA, 7 PA,8 P4,9 PA, IO

P5,7 P5,8 P5,9 P5,10

P%7 P6,8 P6,9 P%IO

t_
!

o

where the double-subscript elements are the transfer probabilities be-

tween unequal subregions. None of the elements in the B and C

matrices are equal.

With matrices _ and N s defined as tefore,

: P (16)

Sp s(i_p): No (17)

Matrix I is a q-by-q-unit matrix. Equation (16) is used to fol-

low neutrons from collision to collision in the configuration when

2kLI _ 2_LII. When convergence of (16) is slo_, equation (17), which

represents q simultaneous algebraic equations for the total number of

scattering hits in each subregion, is used.

Combined application of diffusion theor) and numerical method. -

Assume, for example, a thick slab having an Isotropic source plane at the
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left extreme boundary and located in vacuum. Ordinary diffusion theory

applies accurately in the region of about three or more mean free paths

from the source. Denote this as region II. The entire slab is solved

by ordinary diffusion theory. The resulting flux, however, is plotted

only in region II because an exact transport-theory calculation would

yield substantially the same curve only in this region. This leaves the

region from the source plane up to three mean free paths to be worked by

higher order theory.

The flux in region II includes neutrons that have crossed and re-

crossed the interface any number of times. The angular distribution

into region I arises from this flux and is calculated by equation (BS).

It therefore represents the final angular distribution and is consequently

calculated only once. Thereafter_ region II is treated as a vacuum in

following the neutrons in region I.

The first-collision distribution in region I, due to the angular

distribution at the interface, is obtained by equation (B6). To this is

added the contribution from the original source plane at the left bound-

ary. By knowing the first-collision distribution, successlve-collision

densities are calculated in the usual manner, utilizing the transfer

probabilities of region I. The resultant numerical flux completes the

distribution for the entire slab.

Calculation of various _uantities of interest in a slab calcula-

tion. - From the total number of scattering hits nS(i) in each subregion

of the given slab, the average total flux is computed by equation (6).

The total absorption rate in each subregion and consequently in the

entire slab is computed by

Xs q

_capt _ nS(i)
(18)

Since the number of neutrons per second entering the given slab -

that is_ the production - is known, then

Total leakage = Production - Absorption

where the absorption term is given by expression (18).

The total number of neutrons nT transmitted outward through the

extreme left or right boundaries from one or more collisions within the

slab is
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q
nS(i)pT(l i) =

i=l

q
nS(i)pT(lq+l_ i) = nRT

i=l

(19)

where Ir = (r - ½)ZiL and PT(1) is defined by equation (A6).

The angular distribution of these neutrons is (appendix B):

q

n( ,l hl)d = nS(i)e -_i/[_h[ i d._
2

i=l

q

n(xR, l_hl)a_ = _ nS(i)e -_q+z-i/]_h! !_
2

i=l

_h <0 I

_h>0

wherel hlisgivenbyequation(B1).

If neutrons have been followed from col:ision to collision according

to equation (¢), _(i) is known for each col:ision. The number of neu-
trons transmitted after exactly K collisiols follows by replacing

nS(i) equations (19) by _(i) and nT b: _ nT.in

Boundary conditions at extreme boundary of a cell. - Consider an

infinite repetitive-slab array consisting of identical units called

cells. At the extreme boundary of a cell, _e leakage from the cell in

any direction is compensated by leakage into the cell in the opposite

direction. This necessitates determining th_ angular distribution at

the extreme boundaries from the flux within (eqs. (B2) and (B5)) and then

reflecting the angular distribution. The uncollided source neutrons must

be added to n(xR, I_h[)d _ to complete the _gular distribution. The

first-collision distribution of these neutrors is then calculated by

applying the technique of equation (B5), and so forth.

!

O

NUMERICAL EXAMPL_ S

Description of Slabs Studied

To illustrate the preceding development, the slab of sketch (a) was

chosen with a = b = I centimeter. The totel mean free path and the

scattering probability per collision were respectively taken as
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hi = kII = 0.78125 and (h/hs)I = (Vhs)II = 8/10. Each slab was divided

into ten equal subregions (ql = q2 = lO) giving AT.1 = AT.2 = 0.1280. A

unit isotropic source plane was chosen at the interface xO.

In the general case where AT.1 _ ZkL2_ this configuration might be

treated as a two-slab problem (each half separately) by using the angular

distribution at x0 to pass from one slab into the other. However, in

the present case, there is the option of a single-slab treatment, which

is, of course, much simpler. Both procedures were adopted for this

example and gave identical results as anticipated. For the double-slab

case a grid of 50 solid angles was used to pass from one slab into the

other. As discussed in the text, transfer probabilities between sub-

regions of unequal width can always be used as an alternative to the

angular-distribution approach°

Let pT and p_T be defined as the respective probabilities that

a source neutron will be transmitted through the right or left boundaries

after exactly K collisions. For example, PT0 would be the probability

of a transmission through the right boundary directly from the source.

From symmetry_

for P_ and PT1 are formulated in appendix C.The multiple integrals

By employing the previously given values of k and hs, pT and

pT were evaluated as pT = 50.0 and pT = 47.07 per thousand source
J_

contribution to FT consists of neutrons thatneutrons. Part of the

suffer the single scattering collision to the left of the sourc_e plane.

The fraction of these that escape through the right boundary P_l was

evaluated as 12.3 per thousand source neutrons. In addition to the

neutron flux, these values were compared with the results of the numeri-

cal method.

The block diagram for the numerical analysis, using the single-slab

treatment_ is given as appendix D. Twenty collisions proved sufficient

to give a converged flux.

The neutron flux and transmission probabilities I_R p_, p_T were

obtained by a Monte Carlo calculation (appendix E) considering 10,700

histories for up to 20 collisions each. The results were compared with

those of the numerical method. A P3 spherical harmonics solution

(appendix F) and a P1 diffusion-theory calculation were also performed

for the total flux and were compared with the other methods.
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The slab half-thickness was suceessivel_ changed to i/5 and 5 total

mean free paths with the same values of h snd h/h s. The numerical-

method flux was compared with diffusion theory for these cases.

As a second example, the configuration cf sketch (a) was chosen,
but with

hi= i, = _-_, = 5.45, = 1.0

and with the source plane at X L instead of X 0. The widths of slabs

I and II were taken as 2.0 and 2. 0177 centimeters, respectively. By

choosing ql = 3A subregions in slab I and q2 = i0 subregions in slab

II, equation (ii) is satisfied. Thus, AT.I = _LII = 0.058824. There are,

of course, many other integral pairs ql and q2 that could have been

chosen to achieve the equality of the gkL's.

The set of transfer probabilities P0_ El, P2, • ", P44 was cal-

culated from equation (A8a). The additional set PI' P2' " " "' P%4

was calculated fro_ (A8b) in order to determine the first-collision dis-

tribution of the neutrons emanating from the source plane at XL. The

successive-collisions technique of equation (13) was applied for 28

collisions and yielded converged results. The number of neutrons trans-

mitted after exactly K collisions past XL and X R was recorded in

the process.

For comparison, a Monte Carlo calculatica was performed for the

total flux and the number of transmissions. Up to 28 collisions were

allowed, and 25,000 neutron histories were followed.

Finally, the flux was obtained by solving the _4 simultaneous equa-

tions represented by equation (14).

!

O

Results

The results of the numerical and Monte Carlo methods for the symmet-

rical slab of sketch (a) are contained in tables I and II. Table I also

includes results of the P5 approximation. _he fluxes are plotted in

figures i and 2. Figure 2 includes a PI a;proximation for comparison

with PS"

Against the analytic values of P_ = 50.0, P_ = 47.07, and

_RI = 12.3 thousand source neutrons, Morte Carlo yielded averagedper

values of 50.0, AT. 81, and 11.97 per thousand as compared with 49.6,

47.05j and 12.18 by the numerical method. The Monte Carlo flux and
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transmissions sometimes suffer an appreciable deviation from symmetry in

each half of the slab (table II), but the averaged values are in good

agreement with those obtained by the numerical method, which, of course,

suffers no deviations from symmetry. The total leakage was 0.43406,

O. 43556, and O. 43598 per source neutron per square centimeter per second

by the Monte Carlo, numerical, and P3 methods. The total absorptions_

satisfying neutron conservation within 0.04 percent, were 0.56569,

0.56492 , and 0.56402, respectively.

In addition to the PI and P3 fluxes, figure 2 contains the re-

sults of the numerical-method solution utilizing 100 subregions instead

of 20, as presented in figure 1. The finer mesh was chosen to test the

accuracy of lumping the scattered neutrons at the center of each sub-

region and to acquire a more detailed variation of flux than appears in

figure 1. When averaged over each subregion of figure l, the numerical

flux differs by a small fraction of a percent from the 20-subdivision

case, implying a negligible lumping error. The same is true for the

P_'s, K = O,l_ . . ._ 19. Thus, for practical purposes the lO0-subregion

case represents a precise solution of integral equation (lO) and hence

the transport equation, in the sense that further subdivisions would yield

negligible changes and that the numerical method has exactly treated the

angular dependence.

Utilizing the same total and scattering mean free paths as before,

figures 5 and 4 contain numerical-method flux plots for slabs of 1/5 and

5 total mean free paths half-thickness, respectively, from the source •

plane to either boundary. The diffusion-theory flux is plotted for

comparison.

Figure 3 shows the agreement between the numerical method and dif-

fusion theory to be poor everywhere, whereas in figure 4 the agreement

is excellent beyond 2½ mean free paths from the source.

A total of 10,700 Monte Carlo neutron histories required about 2

hours of IBM 653 machine operating time as compared with 3 minutes for

the numerical method. Sketch (a)_ worked as a double-slab problem,

required about 4 minutes per slab per interface crossing. Twenty colli-

sions were followed within each slab. Thirty minutes machine time corre-

sponding to eight interface crossings yielded results identical to those

listed in table I.

_e numerical and Monte Carlo results for the second example (two-

region unsymmetrical slab) are listed respectively in tables IIl and IV,

and the fluxes are plotted in figure 5. Table III shows that 28 colli-

sions proved sufficient to obtain the neutron flux accurate to the fourth

decimal place in comparison with the solution of the 44 simultaneous

equations for the neutron flux.
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Figure 5 shows that the numerical flux pLots into a smoothcurve
about which the Monte Carlo solution oscillat_s. The reasonably close
a{_reementimplies a check on the correctness }f the numerical solution.
Identical remarks apply to the transmission probabilities in tables III
and IV.

The numerical-method leakage through the XL and XR boundaries
was O.68969 and O.061656per source neutron t.) give a total-leakage
probability of 0. 75155per source neutron. Tile respective Monte Carlo
values are 0. 694S84, 0. 060558, and O.75474. '_e total absorption per
source neutron is O.248628by the numerical m_.%hodand 0.245178 by the
Monte Carlo calculation and thus checks neutr{m conservation.

Following 28 successive collisions numerically required about 30
minutes machine operating time as comparedwith 15 minutes machine time
in solving the 44 simultaneous equations. Twenty-five thousand Monte
Carlo histories required about i0 hours.

]

O

Discussion of Resul_ s

The lO0-subregion case of the slab of sketch (a), as opposed to the

20-subregion case, yielded virtually identica_ results for all the flux

and transmission values. From this, it is concluded that the error

introduced by lumping the scattered neutrons _t the center of a subregion

was negligible for this problem.

Anticipated qualitative features are confirmed in figures 2, 5, and

4. The readily obtained numerical result is _n excellent agreement with

P5 beyond i mean free path from the soumce am._ with diffusion theory

beyond 2.5 me_1 free paths. From the source to about 1/5 of a mean free

path, the agreement of P_ and PI with the aumerical method is poor

and becomes worse, in general, as the source _lane is approached. In

this vicinity, a proper treatment by transport theory requires a large

mumber of spherical harmonic terms to account for the large forward bias
in the net neutron current.

The quantity I/X _ Z was chosen such that P_ : 50.0/i000, and there-

fore Z _ 1.280. This value of Z was obtained by visual interpolation

from a set of curves given in reference 5.

The simultaneous-equation approach of equation (14) proved best in

the unsymmetrical-slab case or second example. This solution represents

the flux that would be obtained by following m_ infinite number of
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successive collisions according to equation (13). This approach, there-
fore, represents the solution to the problem.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio, DecemberIi, 1958

O
t--

I



2_

APPENDIX A

C_LCULATION OF TRANSFER PROBABILITIES AND LUMPING ERROR

A neutron is scattered or born isotrop_cally at x' in dx' in

sketch (b). Denote by pT(x' ,x) the probability that it will pass

directly through the infinite plane at x _ithout suffering a collision.

:_r- ®/

Sketch (1:)

_qe probability that it scatters with (irection cosine _ in d_

i
is _ d_ (appendix E). The probability of traversing a distance 0 with-

out a collision is e-P/k. Summing over-al_ angles to the right of the

source gives pT(x',x).

_01
1 (_-x')/m

pT(x',x) = _ d4a e- x > x' (m)

The probability that the next collisio1[ occurs in dx about x is

P(x',_)dx: l_m PT(x',x)- PT(x'x+ax)
Ax-_O

1_o_ e-(X-_',/_(1 e-_/m)= i_ _ d_
Ax-_0

1 fl (x,x,)Imd:_d_ e- __
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By letting t = X - x' and _ =_ x - x'--, this expression becomes

dx e-t

P(x' ,x)dx = _-_ x-x')/_ t
dt x > x' (A2)

and (AI) becomes

e -t

pT(z) = _ t 2
-- dt (AS)

Equation (A2) represents the kernel of integral equation (i0) when

x > x' and is the well-known exponential integral. If x < x', the only

change is to replace x - x' by x' - x. The symbol i is the number

of mean free paths in Ix - x' I centimeters.

Integrating by parts gives

i -_ - !_ e-t

PT(1) = _ e 2 J_ _ dt (A4)

and

( i ntn-i e -te-t

I L - -_- dt = + . dt + -_- dt
=

The value of the second term is given in Jahnke and Embde as

1.92×10 -8 . Integrating this series term by term gives

Ii : 1.92><i0-8 + in 15 + £ (-nl!nlSn _ (-l)n+l_nin Z + (As)
n n'n

n=l n=l

The first three terms are lumped into a single constant. The result is

-0.57721560. Equation (A4) becomes

PT(z) = 0.5 - 0.21159220 Z + i Z in _ - i E (-l)n+izn+l (A6)

n=l (n+l):n

This expression is the probability that a neutron scattered or born

isotropically at x' is transmitted through a boundary Z mean free

paths away with no intervening collisions.
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AL' = _L

By referring to sketch (c), the transfer probability between the

two shaded subregions is computed as follow_s:

All neutrons scattered in AL' are luaped at x' inside AL'; x'

is ordinarily chosen at the center of AT,' This is not an essential

choice, but it is a convenient one. The su_regions have been taken suf-

ficiently small so that the lumping error c_n be neglected.

The quantity L' is the distance in m_an free paths from the source

plane to the center of ALj L r is the distance from the center of AT,'

to the center of AT,. The probability that a neutron scattered in AT,'

will make its next collision anywhere in _L is given by

Z' = L' AL--T
becomes

But

(AT

(A7)

AT.
and _ = L' + Substituting from equation (A6),-T"

P(L ,hL) : 0. ZIIS9_20 AT,+_[L' - in ' - - ' + in '+ +

i (n+l)'n L' + _)n+l IL )n+l
(As)

P(L',AL) is the transfer probability from a source plane into a subregion

of width AT, whose center lies L' mean free paths away from the source

plane.

The source plane is ordinarily taken at the center of a subregion.

Then,
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L '=_ Lr= rAL

P(Lr,AT') -= Pr

•., (q-l) (ASa)

If a source plane exists at the boundary of a subregion,

(ASb)

The probability that a neutron will make its next collision in the

subregion in which it scattered is given as

_) _PO = i - 8PT = 0. ZI159220 AT. - _- in -_- + " 1_l)n+l {AL]n+IE n+l) :nKT]
n=l

(Ag)

Transfer Probabilities Between Unequal Subregions

Suppose that AT.' _ AL 1 lies in medium I and hL_ ALII lies in

medium II. It can be proven that_ for slab geometry_ the transfer proba-

bility still depends on the total distance in mean free paths from the

source plane in AL 1 to the collision center of ALII" From sketch (d),

SI_:i:'_AL1 llnter_

t liiiliii,
....

i lii',!i!_,i
lii_'

I @!ii!_i

Slab II

"'::_LII:I':"

:i:i:i:::i:i_

Iiiiii!liiii!iiiiI
IIiiiiiiiiiiiiii!iiiill

ii! iiiiiiiiiI
liiiiii!liiiiii::

liiiiiii@iiiilI
x o

Sketch (d)
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L' = ZI + ZII

II
Zr = Cr 2 - !_ALIIzj

rl_r2_ := 1,2_

Equation (A8) now reads:

where

(AlO)

--i(IrI + ZrII+_)in(lrI I[I -_2I )2 + _ + +

-- _ + +

2 = (n+l)' n

I and givenby(A10}.

_ C!I+ lrll AL_I)n+I] (All)

Equ_tion (All) is used to calcu-

late transfer probabilities between unequal s ibregions.

!

O

Lumping Error

Again, in sketch (c) the lumping error p,_r collision e arises

because neutrons scattered anywhere in AT.' _e lumped at a source plane

at the center of AT,' If S(L')dL' is the _rue source distribution

inside ZkL', where dL' is of infinitesimal _ridth, the lumping error for

the transfer probability P(Lr,AI. ) is

Lr + -_-
S(L' )P(L' ,AT.)<m'

7nr-_

L _L

r+ T

_L AT, S(L' )dL'
Lr - -_-

- P(Lr,AI. ) (Ai2)

Equation (AI2) implies that if all neutr!ms inside AT.' were actu-

ally scattered from a source plane at its cen-;er, the lumping error for

P(Lr,ZkL ) would be zero. This is verified by _;ubstituting

S(L') = SS(L' - Lr) into (AI2).

The m_ximum possible lumping error that _ould arise would occur if

all neutrons were scattered in ZkL' at either of the two boundaries of

AT,' Then,
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or

= S (L' Lr + _)aL' (for cb)

Then

For P0j for example, the maximum possible error is

_max=P0-Pl = eq. (A9)-eq. (ASb)= 2_-_in 2 + _ (-l)n+l(AI')n+l_ I i)
n=l (n+l):n _-+i

In actual practice the error will be considerably smaller than this

because neutrons will be distributed throughout AI.'.

lusight into the magnitude of the lumping error may be gained by

writing S(L') : _L' + _ in equation (AI2). This accurately approxi-

mates the correct but unspecified source distribution in AI.', provided

Z_L' is small. The quantity _ is chosen so as to normalize the source

distribution in AI.', while _ remains an unknown parameter unless the

source distribution is specified. The integration in (AI2) can then be

performed with the result being indicated as f(L,Z_L,_). Thus,

_(_,Lr,AI. ) = f(Lr,AI.,_ ) - P(LE,AI. )

where LE has been written for Lr in the P(Lr,AI. ) term of equation

(AI2). By setting _ = 0 and solving this complicated equation for LE,

the exact location within Z_L' where all the scattered neutrons can be

lumped with zero error is obtained for a given _, L_ and AI.. This

point will rarely coincide with the center.
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APPENDIX B

ANGUIJ_R DISTRIBUTION AND FIRST-COLIISION DISTRIBUTION

DUE TO AN ANISOTROPiC SOU}!CE PLANE

Angular Distributicn

i ___

Slab I

x0

Sketch (e)

Slab II

6os-ll
<t;

_nterfac_

The angular distribution at the interface of neutrons entering slab

II from slab I is computed from the known ntmber of scattering hits

nS(i) in slab I.

In sketch (e), 2h is a unit vector in the direction of the neutron

velocity that is specified _y the cosine of the angle between _h and

the x axis; that is, _h = 2h "_" The vecto_ _h can be considered as

the radius vector of a unit sphere about the point P as its center.

The surface of the hemisphere to the right of the interface is

divided into a grid of g strips of equal a_eas formed by rotating

about the x axis for h = I_2_ . ._ g. _hen_

2h

g

_0- 0 h = 1,2, . • ._ g

(B1)

0



ot_

51

where _h,l is the Kronecker delta. Thus, if g = 50, for example,

d_ = 0.02 and _i = 0.01_ _2 = 0.05_ US = 0.05, • • _50 = 0.99.

The fraction of neutrons scattered into d_ is ½ d_. The fraction

that reaches the interface from the scattering center in subregion i

without further collisions and with direction cosine l_hl is
_ZI
e ql+l-i/l_hlThus,

ql

-Z_l+l-il I_hln(_o,l"hl)d_= nS(i) i d_ e _h > 0
i=l

IZ_L
ZI [(ql i- i)- _] Iql+l- i = +

(B2)

Similarly,

q

i=ql+l

_II
- i_qlll _ I

nS(i)½ _ e

ZII : [(i
i-q I ql ) - I]ALII

_ih <0

(B3)

Equation (B2) is the angular distribution entering the second slab

due to the flux in the first, and (BS) is the converse. It should be

noted that the angular distribution is not isotropic.

First-Collision Distribution in Second Slab Due to Angular Distribution

Define _ as the probability that a neutron with direction cosine

_h will pass through a single subregion of slab I without a collision.

=_ e-AT'I/I_ h I

_T = e-Zmii/l_hl

(B4)

The quantity i _h is the probability that a neutron with direction

cosine _h will collide within a single subregion.

The number scattered from the first collision in each subregion i

of the second medium is therefore
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_h > 0 (aS)

i = ql+l, ql+2, . ._ q

From slab II into slab I,

g

n_(i) = (_s_ I h_=l n(xo_l_hl)d_(_) ql-i (1 - _) _h < 0 (B6)

i = 1,2, " ' ql

The factor (5h)ql-i(1 - _) gives the fractian of the n(XO;_h)d _ inter-

face neutrons that pass through ql - i subregions of medium I without

a collision and that collide in the next subregion.

I
P

O
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EVALUATION OF INTEGRALS FOR PROBABILITY OF TRANSMISSION

WITH NO COLLISION AND ONE COLLISION

The quantity pT is equivalent to equation (A3). Fo: the slab of

sketch (a), Z = a/h = i/h, since a has been chosen to be i centimeter;

pT was arbitrarily chosen as SO. 0/i000; h was determined so as to give

this value_ and turned out to be approximately O. 78125 (ref. 5).

ist Collision

point-

\
0

PO

Sketch (f)

TO evaluate PT' consider sketch (f). Let P_I and P_I denote

the respective probabilities of a source neutron suffering its first

collision to the right or left of the origin and then escaping through

the right-hand boundary. Then

To evaluate P_I ' for example_ write the expression for the number

of neutrons per square centimeter per second (NT(_O,_l,PO,Pl)d_0_d_l, dPo )

born into solid angle d_0_ scattered into d_ I at a radius PO from
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the origin, and traveling the remaining distaace Pl to the right-hand
boundary without a subsequent collision. If 3..total of N neutrons per
square centimeter per second are isotropically born from the source.,

dE_oe-P)/X dPo d_l e-Pl/l
NT(f_0_l,.pO,Pl)d,Q0d_ldP0: N _ _"s _

where

up all

d_ : - d_ d_, P0 = xl _ a - x I
_0 _ Pl - _l , an l _ : cos _.

_o'S, _l'S_ and xl's _ i_R is obtained:

By summing

_RI fa fl 12_ i= d_0d_0dXl _hs

l=O o:O d%:o _i 0 i=0

Similarly,

I

O

_Xl 0 !i I 1 2_ Xl
_IR= i e _0],d_0d_0dx ]

_hs b0

: -a =0 0=0

Ii _2_ a_xl
d_id_l _

i=0 JC_l:0

Integrating these expressions over s0' _i' m d xI _ives

{_/a{_I_a2 / -:hi_ e-llvo]

_ _S,o ,o _o_1_ _ _o/_J
(e2)

a--_-2 el/_ .... -1 •q--_ _o_ _ e-YO_I
dO ,/0

Integrals (C2) were evaluated on the IBM 6S5 by using the definition

of double integrals and a value of h/_s equsl to 0.8. The results are:

pRR $4.76 _ 12. SI= YOU-6- and = Y0-U-6-
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Thus, from equation (C1),

pT = 47.07
i000

The values

_ _o.o_I _.o_@ _._= i000' = i000 ' = I000

were to be checked by the Monte Carlo and numerical methods.

(c_)

o

uo
!

o
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APPENDIX D

NUMERICAL TREATMENT OF SLAB 0_' SKETCH (a)

The values of the constants (see p. 12) s_e q = 20_ a =i centimeter,

h = 0. 78125, h/h s = O. 8, and Sxo = 1 neutron per square centimeter per

second. Thus, 2_L = 0. 1280. In evaluating the transfer probabilities,

fifteen terms of the series in equations (AS) and (Ag) were used, so

that extreme accuracy was obtained for AT. = 0. 1280.

The accompanying block diagram summarize_ the main points of the

illustrative slab calculation but omits the steps for obtaining pLR.

From T_ _(i) - mS(i), the average flux in i was calculated by _
K--±

equation (6).

I

O
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q

s7

NUMERICAL-METHOD BLOCK DIAGRAM

Increase i

Calculate and store

P0 _ Pr' r = 1,2_ J
Increase r by i

l Calculate 1Pr

I Add (_/Xs) SxoPr to locations that

I represent r th subregion to left andright of source plane

n (i) is now known

19

I Set K = i
L

[Set

Calculate and store _

i-i

_+l(i): _(i - _)P

Calculate total number transmitted

with no collisions as

-8 -- n2(i)2nTL = Sx0

i=l

t
Increase K by l

2o ]+ _-i-" _(_)Pe-i

Calculate total number transmitted with

exactly K collisions as

E s i): 2 _(i) -_ _+l(
i=l i=l

7
K : 19 _[PROGIKAM STOP I

_Sixty locations are used for this purpose: _0 locations to

accumulate the number of scattering hits in each subregion for all

collisions, 20 to store the momber from the previous collision,
S '

@(i), and 20 as the working area for n_+iLi).
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APPENDIX E

MONTE CARLO CALCULATION OF NEUTRON FLUX _dVD TRANSMISSION ]]TfEGRALS

Sketch (g) shows one of the symmetrical halves of the slab of sketch

(a). The purpose of the Monte Carlo calcul_tion was to obtain the total

(K+l)st colli_ior

point _

Origin and _x

zyplca±_ 9 xK_-J--!, x

_I_ th collision point

Sketch (g)

neutron flux and transmission integrals P_ PT1, and P1LR (whose values

are given by eq. (C3)) and to compare them }ith the values and time taken

by the n_]erical method. The probabilities pT K 2_S_ 19 were
J _

also recorded and compared, though not anal;%ically evaluated because of

the complexities. The fact that these multJple-scattering transmission

intei<rais are so re_gxlily obtainable by Mont( Carlo demonstrates the

utility of following individual neutron hisJ ories for thin slabs.

The complete slab was divided into 20 subregions, and the total

number of scattering hits (proportional to _he average flux) was recorded

in each. In following individual histories, all collisions were treated

as scatterings by the well-known technique <f weighting the colliding

neutron by (i - Z_Z) per collision. A neutron leaving the slab from

the K th collision was recorded in the T K <r T_ location of the

machine, depending on the boundary through _hich it escaped.
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To achieve accurate results, 10,700 histories were followed. I By

averaging corresponding fluxes and transmissions in both halves, the

equivalent of 10,700 case histories in each half is obtained. A Monte

Carlo treatment of this slab involves the following:

(i) Choosing random numbers:

A pseudo random number Rn+ I was generated by taking Rn+l_ pRn

where O = 9,677,214,091 and R 0 = 6,250,739,A81 _ud by retaining only

the right ten digits in the product. The extreme right digit always

ends with a i, but nine-digit accuracy is more than sufficient. The i

prevents degeneracy from occurring too quickly.

(2) Choosing direction of travel after isotropic scattering colli-

sion in laboratory system:

Because the direction of travel after an isotropic scattering colli-

sion is unrelated to any previous direction, the x-axis can always be

chosen as the fixed reference or initial direction. The scattering angle

thereby formed is denoted by _ and its cosine by _.

From sketch (h), the probability distribution function for a neutron

passing through the shaded area dA is

dA/1 _ FdA = 2_ sin _ d_
irection after scattering)

i -- x, or initial

direction

Sketch (h)

_o _The cumulative distribution function is p(_' )d_'

equal to a random number R I to give

cos _ = _ = i - 2R I

and is set

(El)

iThe standard deviation of P_, for example, is

=_np(l - p) = _i0,700 J0. OSX0.95. Thus, in the Monte Carlo calcu-

lation, PT0 = 5___q_0+ 0.67_5a _ 50.0+i. 35 with 50-percent expectancy.
I000 i0,700 i000
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Thus, to pick from an isotropic distributio:_ in the laboratory system_ a
randomnumber is chosen_ and equation (El) is applied. Picking an
aximuthal angle is unnecessary for this sla_ problem.

(3) Picking distance of travel to next collision:

The probability distribution function for a neutron traveling a

distance p without a collision and then colliding in dp is

p(p)dp = e -p/_ _. The cumulative distribu;ion function is %P p(p')dp'_

and equating to a random number gives

_--_ L_ (1 - R_)= _-__ R2 (E2)

(4) From sketch (g)_ the penetration d:Lstance is :

XK+z--XK + _+l_ (ES)

where XK is the X coordinate of the prerious or K th collision.

_ue Monte Carlo problem was programmed according to the block

diagram given on the next page. After foll_wing i0_700 histories for

up to 20 collisions per history, the total ]Lumber of scattering hits

nS(i) in each subregion i was punched out in addition to the trans-

mission probabilities _P_, p_T _p_l, K = 0, i, ., 19. Then, the

average flux in i was calculated by

_(i) = .s(i)/(z s _x:_o, voo)

where AX is the thickness of subregion i in centimeters and 10,700

is the normalizing factor. The number of n,_utrons transmitted was

also nomnalized to one source neutron by dividing by i0_700.
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!

_O
!

O

_" _I Start next history k

1
7 I  et =o I(coming off source)

1
_I Pick new random 1Increase number _ R I

K by I

Calculate 1

|

= i - 2R I

Choose another randomnumber, R2

OK+I = -_ in R 2

Proceed to next

collision by in-

creasing K by i

unit if less than

desired number of

collisions has

been studied.

Otherwise_ start

next history.

Calculate

xK+1 = xK + p_+l_K,

XO_ 0

Test whether IXK+II is_

_lal (outside slab) or

_I al (inside slab)

Locate subregion in which neutron

has collided. Add weight

(i - Za/Z) K+I to corresponding

machine location. This is the

fraction of the one neutron that

started the history_ and scattered

from the (K+I) st collision.

Neutron with weight

(i - ZJZ) K has

been transmitted

from Kth collision.

Add this weight to

TK or _fK loca-

tion_ depending on

whether XK+ I is

positive or

negative.

Outside

slab
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APPENDIXF

P3 SPHERICALHARMONICSSCLUTION

The PS approximation in the Legendre series expansion of the
transport flux,

F(x,_)---_'2_ + 1
2 F_(x)Pz(_)

l F(x;_)Pz (_)d_F_(x) : i

gives rise to four simultaneous differential equations for the total

neutron flux F0(x ) when substituted into the transport equation (ref.

i). For isotropic scattering in the laboratory system and a distributed

constant isotropic source S_ these equations are:

Fi(x)+ bo%(X) S : 0

F_(x) + 2F_(x) + SblFl(X ) : 0

2Fi(x ) + 5F_(x) + 5blF2(_ ) : 0

_F_(x)+ 7blF3(x): 0

_" (F1)

The net neutron diffusion current is Fl(X), _hile F2(x ) and Fs(x ) are

higher order fluxes and currents; b I is the nacroscopic total cross

section and b 0 the macroscopic absorption c?oss section. An identical

set of equations holds for another region_ sm[ A_ except that SA
neutrons per cubic centimeter per second repl_ces S and the b's are

replaced by a's.

Consider sketch (i). As discussed in re _erence i, the source plane

is treated as a vacuum region of width 2Xl, qhich is eventually

allowed to approach zero with 2XlS A approaciling i neutron per square

centimeter per second. Since region A is vaclum_ a0 = aI = O.

!

-.j

O
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I

O

<O

!

o

Vac ULIEq (i Neutron/cc/sec-]

 °°lJal= 0

Soufoce

region

A

I
I

r

!
--_ _z

I
I
I

Sketch (i). - Slab of sketch

Region B

x 2

b 0 = 0.2560

b I = 1.280

a) by spherical harmonics.

_-- Vacuum

The solution of equations (FI) for regions A and B is:

4 Bve_V Ixl

w=l

4

_(_) = _z F2 = _ _vBve_l:<l
W= 1

_(_) : -(2/3)sAx+ A_

A

Fs = _ m_B_e_lxl
u:l

where A and B are arbitrary constants. Also

b0 Sbobl S {_

Yv : _v _v- 2_2_ 1 Xv-2 iAb I _w

55 28 $5 bob_

The boundary conditions are (ref. 6):

At x: O,

4S

(F2)

(FS)
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(F4)

At x = x!,

j(xi): F (xi) m: o,i,2, 

At x : xz,

(F6)

Equation (F4) is implied from the requirement that no net flow of

neutrons occurs in any direction across the Flane of symmetry. Equation

(FS) expresses the continuity of the transport flux in any direction

across the interface, and (F6) is the set of boundary conditions proposed

by Marshak (in ref. i) to approximate the rigorous boundary condition

that no neutrons reenter the slab from the vazuum; that is_

F(x2,_) - 0,_ < 0. In addition, the symmetry condition F(x,_) = F(-x_-_)
must be satisfied.

From equation (FS),

_1,2,3,4 = + -i- i % _/<21 - A× 2 (FV)

From equation (F4),

A I = 0, A S = 0

Equation (F7) implies

(FS)

Boundary conditions (F5) and (F6) lead t) the following set of

equations for the arbitrary constants:

I

-q
O
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I

Z By e

v=l
= A 0

4

YvBve_VlXl] = SAXl

v:l

4

SvBy e_vlxll = A2

v=l

_ xvs_e_]_il= _ z_SAxl5
v=l

_(4 + _ _ sr_s_e_VIxzl = o
V=l

4

-->] (1 - ss>+ 8X,,)B_e_'_2"' ---0
"v=l

45

(Fg)

Equations (F9) were solved for AO, A2, BI; B2, BS, and B A in terms of

the other known quantities. In the process, e _ IXll was approximated

by I + _IXl I, since the latter is the asymptotic expression approached

as xI _ O. The limit was taken as x I _ 0 to give 2XlS A = i. The

constants A 0 and A 2 were eliminated, and BI, B2, BS, and B 4 were

finally solved in terms of b 0 and b I and then substituted back into

(F2). The values are:

B I = -0.00576652 B 5 = -0. 0694569

B2 = 0.952918 B 4 = 1.599507

The total flux F0(x ) was plotted against x (fig. 2), and the

total number of absorptions and leakage from the slab were computed and

compared with the values obtained by the numerical and Monte Carlo

methods.
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TABLE II. - MONTE CARLO RESULTS FOR SLAB OF SKETCF (a) FOR i0,700 HISTORIES _

Subregion

- Side of origin

+ Side of origin

Average

(a) Fluxes

[Origin taken at

i 2 3

2.438 1.686 1.414

2.521 1.796 1.419

2. f_l. 741 11.417

xo]

4 i 6 7 8 9
1.201 O. 680 0.8850 0.7427 0.6070 0.5084

1.242 1.072 I .9065 .7457 .5941 .5299 ]
I i

1.222 1.020 .9959 .7442 .600S .5192 I

zo I
i

0.59681

.4212[

.4090[

(b) Transmissions

P_IO 3 PFXlO

50.47

46.95

35.05

26.6b

19.52

12,65

9.5S

5.74

8 3.83

9 2.41

lO 1.72

ll 1.12

12 .770

!3 i .493

14 .374

15 .230

16 .186

1 7 .071

18 .07!

19 .057

49.53

48.67

35.47

24.74

18.37

13.32

8.43

5.27

4.28

2.99

1.93

.939

.719

.478

• 345

.217

• 184

.10S

.069

.046

(per thousand so<rce neutrons)

Aversze,

per thousand source neutrons

50.(0

t47._1
35._6

25.]0

18.25

12._9

9.(0

5._0

4.(6

2.tO

i._2

1.(3

.]45

.z86

.2 60

._24

.3 85

.(88

.( 70

.(52

"_Total leakage/see = 0.43406/source neutron} total abso_ption/sec = 0.56569/source neutron

i0

(as c_Ilputed from 2 E Y(i)Z a AX).

i=i

tP1LR = 11.97/1000.

I



TABLE Ill. - NUMERICAL RESULTS FOR TW0-REGION UNSYMMETRICAL SLAB
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o
b-

I

!

O

Transmissions Flux

K
PKTXlO 4 P_IO 4

88.607

96.626

93.172

81.131

66.091

51.467

38.847

28.684

20.851

14.989

10.689

7.578

5.351

3.767

2.646

1.856

1.300

.9100

.6366

.4451

.3111

.2175

.1520

.1062

.0742

.0518

.0362

.0253

.0177

0 5000.00

1 989.99

2 401.50

3 200.73

4 112.27

5 67.200

6 42.061

7 27.149

8 17.910

9 12.002

10 8.135

11 5.559

12 3.822

13 2.639

14 1.828

15 1.269

16 .8826

17 .6146

18 .4283

19 .2986

20 .2083

21 .1454

22 .i015

23 .0709

24 .0495

25 .0346

26 .0241

27 .0162

28 .0118

Subregion

i

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38
39

4O

41

42

43

44

Successive-collision Simultaneous-equation
solution solution

Region I

2.1686

1.5337

1.3058

1.1601

1.0522

.9663

.8947

•8334

•7797

• 7319

.6889

.6498

.6140

.5811

.5506

.5223

.4959

.4712

.4481

.4263

.4058

.3865

.3683

.3511

.3348

.3193

.3047

.2909

.2778

.2655

•2539
.2430

.2330

.2242

2.1686

1.5337

1.3059

1.1601

1.0522

.9663

.8947

.8334

.7797

.7319

.6889

.6498

.6140

.5811

.5506

.5223

.4959

.4712

•4481

.4263

.4058

•3865

.3683

.3511

.3348

.5195

.5047

.2909

.2778

.2655

.2539

.2430

.2330

.2242

Region II

0.2176

.2089

.1992

.1888

.1780

.1668

.1551

.1428

.1297

.i150

0.2176

.2089

.1992

.1888

.1781

.1668

.1551

.1428

.1297

.llS0
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TABLEIV. MONTECARLORESULTSFORTWO-REGION

UNSYMMETRICALSLAB(25,000 I_ISTORIES)

i
2
3
4
5
6
7
8
9

i0
ii
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28

Transmissions Flux

K p_TxI04

5088.40
976.320
382.992
190.118
107.404
69.601
44.012
29.416
17.702
12.614

8.228

5.784

4.009

2.429

1.617

1.014

.9172

.4454

.4675

.3435

.2552

.2036

.0593

•0683

.0599

.0427

.0304

.0104

.0055

pT×104

85.200

96.160

92.080

78.928

68.326
46.642

38.743

27.141

20.134

14.028

10.232

8. 857

5. 018

3.975

t 2.293

1. 947

.9563

.7925

.4472

•4270

.2319

.4757

i .1833
i .1395

.0955

.0310

.0399

.0448

.0116

Subregion I Results

Region I

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

30

31

32

33

34

2.0935

1.4811

1.3003

1.1233

1.0222

.9665

.8733

.8096

.7981

.7671

.7166

.6441

.5930

5452
5542

5142

4909

4383

4172

4530

3996

3864

3354

.3418

.3189

.3245

.3212

.2792

.2876

.2717

.2591

.2505

.2366

.2260

Region Ii

0.1953

.1947

.1902

.1893

.1906

.1581

.134t

.1333

.1430

.1049

35
36

57

58

39

¢0

¢1

¢2

13

¢4

I

----1
o
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2.8

!

o

2.4

2.0

Method

Monte Carlo (average)

Numerical (20 subdivisions)

v

1.6

c6

0
1.2

.8

0 .2 .4 .6 .8 1.0

Coordinate_ x_ cm

Figure i. - Comparison of Monte Carlo and numerical-method solutions.

Total mean free path, _, 0.'78125 centimeter per collision_ scattering

probability_ _/_s _ 0.8.
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--4
O

O Metho(

PI

P3

O Numerical ( [00

subdivis: )ns)

.8 1.0

Figure 2. - Comparison of PI_ PS, and 100-{ubregion-numerical-

method solutions. Total mean free path_ \_ 0.7812b centimeter

per collision; scattering probability, X/_s, 0.8.
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2.0
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1.2

I
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.A

I
I
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I

I
I
I

I
I
i

I

i
I
i

I

I
!

i

1/25

Numerical method

Diffusion theory

I
i
i

i

el

0 2/zs 3/25 4/2s 5/?s
Mean free path,

Figure S. - Numerical and diffusion-theory curves

for symmetrical slab of I/S mean free path half-

thickness. Total mean free path, X, 0.7812S

centimeter per collision} scattering probability,

_/X s , 0.8.
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2.8

2.4

0

0 Dif Susion theory
Num_rical method

t-
!

k

(

H
v

£

0

2.0 0

.8

.4

)

OoX
(

0 i 8 S 4 5

Mean free paths,

Figure _. - Numerical and diffusion-ti_eory curves for s_mmetrical

slab of S mean free paths half-thici_ess. Total mean free path_

K, 0.78125 centimeter per collision; scattering probability,

_/_s' 0.8.
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